CCD Instrumental Signatures Gary Bernstein (UPenn) & Andrei Nomerotski (BNL) DES-LSST meeting, Fermilab, 24 March 2014 ### What's the problem with thick CCDs? Electrostatics in semiconductor Electric field lines inside CCD are not straight \rightarrow pixels change their size and shape Static : edge effects, tree-rings window "Dynamic": brighter-fatter effect Pixels are skyscrapers # Astrometry is mapping from pixel coordinates to the sky $$J = \begin{pmatrix} \frac{du}{dx} & \frac{du}{dy} \\ \frac{dv}{dx} & \frac{dv}{dy} \end{pmatrix} = \frac{1+\mu}{\sqrt{1-g^2}} \begin{pmatrix} 1-g_1 & -g_2 \\ -g_2 & 1+g_1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$ Need to account for magnification, shear and rotation ## Workshop "Precision Astronomy with Fully Depleted CCDs" at BNL 18-19 Nov 2013 #### Goals: - Bring together people working on instruments, algorithms and science - Bring together current and future experiments - Over 70 participants from 32 institutions, 14 from outside the US - 20 talks and 8 posters → Proceedings in JINST ## Workshop "Precision Astronomy with Fully Depleted CCDs" at BNL 18-19 Nov 2013 Formed a working group (Astier, Bernstein, Jarvis, Lupton, Magnier, Miyazaki, Nomerotski, O'Connor, Peterson, Stubbs) Communications between experiments Bridging sensors, algorithms and science Regular general phone meetings \rightarrow another workshop in fall 2014 Encouraging that one can understand these effects from the telescope data Gary's talk: DES data But better to study them under controlled conditions of the lab BEFORE the detector go to telescope Andrei's talk: LSST sensor testing and simulations #### Andrei's talk Outline - Instrumental effect related to sensors - Brighter Fatter, tree rings and edge effects - How we plan to address this in LSST - Lab measurements - Simulations of sensor effects - Systematics due to sensor effects #### LSST Sensors #### Science sensors Good prototypes from e2v and ITL; First articles ordering in progress #### Production in 2015 - 2019 - Sensor acceptance testing and raft assembly in BNL and LPNHE (Paris) - Raft integration in camera cryostat at SLAC Testing labs: careful characterization of sensors (beyond acceptance testing) BNL (includes raft characterization); Harvard; LPNHE; UC Davis ## Fast progress towards LSST raft - Raft test cryostat with full signal chain in operation in BNL since Feb 2014 - So far a single CCD - Raft is a 9-CCD, 144 Mpix camera - planned as LSST Commissioning Camera in 2019-2020 Single-CCD image from Raft Test Cryostat #### Edge Effects in CCDs - On the egde: - Non-linearity up to 50% - Ellipticity up to 20% - DES saw similar effects - Also for cosmic muons J.Estrada #### Spot flux does not trace <u>flatfield</u> flux #### Spots and flat field behave differently due to space charge effects → similar to brighterfatter effect #### Intensity Dependence: Brighter-Fatter Effect # Charge smearing perturbs photon transfer curve #### Signal Correlation in Neighbouring Pixels 2-d autocorrelation at 73Ke, half of full well depth, (Harvard & IN2P3 analysis) #### **Brighter-Fatter Effect and Pixel Correlations** Phenomenological approach using parameters from correlation matrices, can provide corrections ## "Tree rings" FIG.5) Photoscanning measurement on a wafer surface. The structure seen is the gradient of the resistance distribution. A Material Innovation for the Electronic Industry: Float Zone Single Crystal Silicon with 200mm Diameter > L.Altmannshofer, M.Grundner, J.Virbulis, J.Hage Wacker Siltronic AG, D-84489 Burghausen, Germany e-mail: Manfred.Grundner@Wacker.com Tree rings arise due to resistivity variation Fig. 4.1 Single crystal growth by the floating zone technique. From S.Holland's talk at BNL workshop ## Lateral E Field from tree rings Proper electrostatic simulations can be done but need to know sensor geometry/doping ## LSST ITL sensors: 41st pixel structure #### Pixel physical size distortions due to masks? - Period 41 pixel x 10 micron = 410 micron - DALSA used electron beam mask writer, could it be DAC differential non-linearity? Old sensors had laser-written mask and did not have this - Weak dependence on bias, no wavelength dependence #### Same effect in DES - Same vendor (DALSA) - 27.333 pixel periodic modulation seen in dome flats - 27.333 x 15 micron = 410 micron : same period as LSST - Is it purely photometric? #### LSST: sensor simulations with Phosim - Phosim (J.Peterson et al): simulating telescopes one photon at a time - Instrumental effects include atmosphere, optics and sensors - Good way to connect sensors to precision astrophysics - Validate sensor part by simulations of lab setups and comparison to measurements - Most of sensor effects are now implemented in Phosim Use tuned simulations to evaluate sensor effects on science (can turn physics on/off) ## Modeling Charge Diffusion Finite range in Si produces a skewed PSF that is fundamentally 3D and depends on interface properties PSF dependence on angle and interface for 1000nm Rasmussen ### Example: Evaluating contributions to shear Absolute spurious shear correlation function after combining 10 years of r- and i-band LSST data; PSF knowledge from polynomial interpolation of stars Requirements for weak lensing : shear correlation systematics are controlled to ~30% of the stochastic levels, or < 2×10^{-5} for $\theta < 1'$ and $< 1 \times 10^{-7}$ for $\theta > 5'$. #### Current work on sensor effects in Phosim - Code development (J.Peterson et al) - Brighter-Fatter effect - Validation of charge diffusion and charge sharing models - Correlations in simulated flats; Compare to data - Tree rings - Tuning doping variations, code validation - Description of lab setups at UC Davis (Tyson) and BNL ## Summary Fully depleted CCD have a non-trivial electrostatics which lead to astrometric biases and PSF distortions (+ other important sensor effects) LSST has a comprehensive program to study these effects in the lab & simulations and their importance for science ## Backups ## Fringes - Interference patterns due to reflections off the sensor bottom, visible at longer wavelengths - Use a random surface with some flatness - Will use BNL metrology data to validate - Assumes that the backside is flat - Fringe data at different wavelengths should allow to extract the backside flatness ## Brick-wall pattern - From laser annealing of back side, visible at short wavelength - Described in PhoSim with 11 parameters - Needs tuning ## Tree Ring Impact Rasmussen